NASA Delays First Crewed U.S. Moon Landing in Half a Century to 2026

The second and third missions in the space agency’s Artemis program—which seeks to return Americans to the moon—were each delayed nearly one year.

NASA Artemis II moon mission astronauts

The crew of NASA’s Artemis II moon mission, which was delayed from late 2024 to September 2025 (clockwise from left): Christina Koch, Victor Glover, Jeremy Hansen, and Reid Wiseman. [Courtesy: NASA]

U.S. efforts to return Americans to the moon for the first time in half a century have suffered a setback.

During a press conference Tuesday afternoon, NASA officials announced that the Artemis II and Artemis III moon missions—planned for this year and next, respectively—will be pushed to September 2025 and September 2026. Artemis II is expected to put NASA astronauts in lunar orbit, while Artemis III aims to land them on the moon, where they would become the first humans to visit the lunar south pole.

The Artemis program is effectively the descendant of the Apollo missions, which concluded decades earlier. But unlike Apollo, it represents a shift toward leveraging private sector companies, such as SpaceX and Blue Origin, for key vehicle components.

Despite speculation that the Artemis lunar landing could be pushed to Artemis IV—which NASA affirmed is still on track for 2028—the space agency said no changes will be made to the flight plan of either mission, and no flights will be added. However, for a variety of reasons, many related to safety, both Artemis II and III will fly later than initially planned.

As Jim Free, associate administrator of NASA, put it: “We’ll launch when we’re ready.”

Safety First

Attending Tuesday’s press conference were Free, NASA Administrator Bill Nelson, Deputy Associate Administrator of the Moon to Mars program Amit Kshatriya, and Associate Administrator of the Exploration Systems Development Mission Directorate Catherine Koerner. The four officials—plus representatives from NASA industry partners such as SpaceX and Lockheed Martin—fielded questions from media about why the missions were delayed.

According to NASA, several issues discovered during Artemis I, which carried the agency’s reusable Orion capsule around the moon in 2022, are causing delays to Artemis II. These center around the spacecraft’s heat shield, abort capabilities, and electrical systems and could pose threats its occupants.

Kshatriya said heat shield erosion during Artemis I caused pieces of the thermal cover to fly off—an outcome not predicted by NASA. The agency said it discovered the issue while rewatching the watershed flight and has spent “the bulk of 2023” working to understand its root cause.

Orion is also dealing with a design flaw in the motor valve circuitry for its life support system, which was tested and approved for Artemis II but not the subsequent mission. The spacecraft’s digital motor controllers are hampering its carbon dioxide scrubber, which absorbs the gas to provide breathable air for astronauts. Artemis I did not test any life support systems, but they will be added to Artemis II along with a new abort system.

Further, NASA found a deficiency in Orion’s batteries. The issue won’t hinder the spacecraft’s ability to separate from the booster in an emergency, but the agency said it could cause unexpected effects.

“We’re still very early in that investigation,” said Kshatriya.

The effort to replace and retest the faulty components will be tremendous, NASA said, but essential for Orion to fly on Artemis II and beyond. Nelson said the revised mission timeline will “give Artemis teams more time to work through the challenges.”

Even more work will need to be done for Artemis III, which NASA said will introduce several new components and systems: a human landing system (HLS), docking module, propellant transfer system, and spacesuits to name a few. Kshatriya said the timeline for that mission remains “very aggressive.”

Free said NASA expects the development of SpaceX’s Starship HLS and Axiom’s next-generation spacesuits will take additional time. The agency has also yet to solve the issue of propellant transfer, or in-flight refilling, which involves a spacecraft drawing fuel from another spacecraft or stationary outpost.

A SpaceX representative attending the media briefing estimated the company will need to complete ten refueling missions before Starship HLS lands on the moon, which the company hopes will happen in 2025. 

The representative added that SpaceX’s Starship—the largest and most powerful rocket ever built—is working toward a NASA tipping point demo to explore propellant transfer between tanks. The company does not consider this a propellant test mission, but the maneuver will be studied during Starship’s third orbital test flight, expected in February.

When asked, the representative did not provide a minimum number of Starship orbital test flights needed before a lunar landing. But the propellant transfer flight, whenever that happens, will be the one that matters most.

“We’ve been building the machine to build the machine,” the representative said.

Free added that development of NASA’s Gateway space station—which is expected to fly on a future Artemis mission—and the Block 1B variant of its Space Launch System (SLS) also necessitated delays. 

But NASA officials said the larger gaps between the missions will allow the agency to incorporate more lessons from previous flights into each increasingly complex Artemis project. SpaceX and Blue Origin, for example, will be required to develop cargo variants of their human lunar landers as part of their obligations for Artemis IV, NASA said Tuesday.

A Clearer Outlook?

When one questioner mentioned the space industry’s doubts about the new timeline—arising from previous Artemis delays—Free explained what makes NASA so confident.

He said the agency now has a better understanding of Orion and other Artemis vehicles. The bigger reassurance, however, is the industry’s support: Free said 11 industry and contractor partners attended Tuesday’s press conference, and all of them contributed to the revised mission schedule.

Kshatriya pointed to the SLS core stage delivery to NASA’s Michoud Assembly Facility as a sign of readiness, adding that the spacecraft’s booster segments are ready to stack and the upper stage is “ready to go.” Further, NASA’s European Space Agency (ESA) partners will ship a service model to the agency in a few months, he said.

Nelson, meanwhile, dispelled fears that China could beat the U.S. to a moon landing. He expressed confidence that the rival superpower would not reach the lunar surface before Artemis III. But with the delay, the two competitors’ schedules are undoubtedly more aligned.

Nelson also pointed to the agency’s recent progress, most notably a partnership with the United Arab Emirates to build the airlock for Gateway and the launch of Commercial Lunar Payload Services (CLPS) missions.

The NASA administrator emphasized that Artemis will only be the beginning of the new era of American spaceflight. The agency is also developing its Moon to Mars program, which Nelson said will rely on international partners to land an American on Mars. Reaching the moon, he said, will be the first step toward missions to the red planet in the future.

Like this story? We think you'll also like the Future of FLYING newsletter sent every Thursday afternoon. Sign up now.

Jack is a staff writer covering advanced air mobility, including everything from drones to unmanned aircraft systems to space travel—and a whole lot more. He spent close to two years reporting on drone delivery for FreightWaves, covering the biggest news and developments in the space and connecting with industry executives and experts. Jack is also a basketball aficionado, a frequent traveler and a lover of all things logistics.

Subscribe to Our Newsletter

Get the latest FLYING stories delivered directly to your inbox

Subscribe to our newsletter